Syntheses of Cyclopentane, Cyclohexene and Olefin Oxazoles as Thromboxane A₂/Endoperoxide Receptor Antagonists

Jagabandhu Das,* Steven E. Hall,* Joyce A. Reid, Wen-Ching Han, Don N. Harris, Harold Goldenberg, Inge M. Michel, Hossain Monshizadegan, Maria L. Webb

Bristol-Myers Squibb Pharmaceutical Research Institute, P.O. Box 4000, Princeton, N. J. 08543-4000

(Received in USA 23 February 1993)

Abstract: Synthesis and antiplatelet activity of a series of structurally simple thromboxane A_2 receptor antagonists are described. The cis-cyclopentane analog (-)-1c was the most potent compound in this series with I_{50} and K_d values of 15 nM and 4.3 ± 0.0 nM, respectively. In radioligand binding assay, trans-cyclopentane analog (-)-1d was the most potent ligand with a K_d value of 0.5 ± 0.3 nM.

In the accompanying papers^{1,2} we described the syntheses and pharmacology of pyrrolidine and 1,3-dioxane, 1,3-dioxolane oxazole derivatives as TxA₂/PGH₂ receptor antagonists at the platelet receptor. Our continued efforts to identify structurally simple analogs led to the syntheses of cyclopentane, cyclohexene and more importantly simple olefin derivatives 1a-d whose syntheses and pharmacological activities *in vitro* are the subject of this communication.

Synthesis

Olefin analog 1a was prepared from readily available diacetate 2 and the synthetic route is outlined in Scheme I. Diacetate 2 was coupled with 2-(3-thexyldimethylsilyloxypropyl)phenyl magnesium bromide in THF in presence of catalytic dilithium copper tetrachloride³ to form a monoacetate which was further elaborated to alcohol-ester 3 following the methodology described earlier for the synthesis of BMS 180,291.⁴ Oxidation of alcohol 3 with activated manganese oxide in hexane afforded an aldehyde which was further oxidized with sodium chlorite⁵ in butanol-water to form acid 4 which was coupled with (S)-serine amide 5⁶ to form bis-amide 6. Cyclization of 6 in acetonitrile with triphenyl phosphine and carbon tetrachloride in presence of Hunig's base,

(a) (CH₂)₃OSiMe₂(thexyl), Li₂CuCl₄, THF; (b) Ione's reagent; (c) MeOH, AcCl; (d) MeOH, K₂CO₃ (e) Hexane, MnO₂; (f) NaClO₂, 2-methyl-2-butene, KH₂PO₄, BuOH-H₂O; (g) WSC, HOBT, NMM, DMF;

(h) Ph₃P, i-Pr₂NEt, CCl₄, AcCN; (i) CH₂Cl₂, NiO₂; (j) LiOH, MeOH-H₂O.

1268 J. Das et al.

followed by oxidation of the oxazoline with nickel peroxide and subsequent hydrolysis of methyl ester furnished oxazole-acid 1a. This route was also used for preparation of cyclohexene derivative 1b.

Cis-cyclopentane analogs 1c,d were prepared from hemi-acetal 7⁷ and the synthetic route is outlined in Scheme II. Elaboration of 7 to carboxylic acid 8 followed the methodology described previously for the synthesis of BMS 180,291.⁴ Coupling of racemic 8 with (S)-serine amide 9⁸ provided a diastereomeric mixture of bisamides 10 and 11 which could be readily separated by silica gel chromatography. Bis-amides 10 and 11 were transformed to (+)-1c and (-)-1c, respectively following the methodology used in the preparation of BMS 180,291.⁴ Although (+)-1c and (-)-1c were obtained in enantiomerically pure form, their absolute configurations are at present undetermined. The related *trans*- cyclopentane derivatives (+)-1d and (-)-1d were synthesized in a similar fashion starting from the corresponding *trans*-acid of 8.

(a) Mg, THF, (CH₂)₃OSMe₂(thexyl); (b) Pd(OH)₂, AcOH, H₂; (c) Py, Ac₂O; (d) Jone's reagent; (e) MeOH, AcCl; (f) WSC, HOBT, NMM, DMF; (g) CH₂Cl₂, MsCl, Et₃N; (h) Acetone, K₂CO₃; (i) EtOAc-CHCl₃, DBU, CuBr₂; (j) LiOH, MeOH-H₂O

Pharmacology

All compounds were tested for their ability to inhibit arachidonic acid (AA, 800 μ M) and ADP-induced (20 μ M) platelet aggregation of human platelet rich plasma⁹ and the results are reported as I₅₀ values in Table I. Consistent with their selective TxA₂ receptor antagonist activity, none of these compounds were effective in inhibiting ADP-induced platelet aggregation.

Table 1

Compound	Ring	R	AAIPA I50 (µM)	Kd (nM)	Slope
1 a	Me X	S Ci	0.235	37.3±5.9	1.52±0.06
1b	α	S CI CI	0.194	63.5±4.5	1.23±0.23
(-) -1 c		(CH ₂) ₄	0.015	4.3±0.0	1.4±0.06
(+)-1c	\subset	(CH ₂) ₄	0.107	23.8±0.9	1.7±0.21
(-)-1d	O.	×√C ci	0.338	0.5±0.3	0.77±0.03
(+) -1d	Q	> Ci	5.163	3.3±0.5	0.71±0.03

The olefin and cyclohexene analogs (1a and 1b) were roughly equipotent as inhibitors of AA-induced platelet aggregation with I₅₀ values of 235 nM and 194 nM, respectively. Although less potent than the corresponding 7-oxabicyclo[2.2.1]heptane analog (SQ 34,943; I₅₀ = 7 nM), 1a and 1b are significantly more potent than a well characterized antagonist BM 13.505 (I₅₀ = 730 nM). ¹⁰ Both antagonists, (+)-1c and (-)-1c, derived from 1,2-cis-cyclopentane were effective platelet aggregation inhibitors, the (-)-enantiomer being 7-fold more potent. A similar trend was observed with the 1,2-trans-cyclopentane analogs (+)-1d and (-)-1d. However, the more active trans-enantiomer (-)-1d was about twenty fold less potent than the corresponding cis-analog (-)-1c.

These antagonists displaced [³H]-SQ 29,548 from its specific binding site in human platelet membranes ¹¹ with K_d values ranging from 0.5 nM - 64 nM. With the exception of the enantiomeric pair (+)-1d and (-)-1d.

1270 J. Das et al.

oxazole derivatives **1a-c** displayed receptor binding affinities consistent with their platelet inhibitory activity in vitro. Despite its modest antiplatelet activity ($I_{50} = 338 \text{ nM}$), (-)-**1d** ($K_d = 0.5 \pm 0.3 \text{ nM}$) displayed a high affinity for the platelet receptor which was comparable to the corresponding 7-oxabicylo[2.2.1]heptane analog SQ 34,943 ($K_d = 1.3 \pm 0.07 \text{ nM}$). The large difference between I_{50} and K_d values for (+)-**1d** and (-)-**1d** may be attributed in part to their overall molecular lipophilicities (estimated logP = 4.28) that aid in selective partition of these compounds inside the phospholipid membrane where the putative TxA_2 receptor is postulated to be localized. ¹²

In conclusion, replacement of the 7-oxabicyclo[2.2.1]heptane nucleus with structurally simple ring systems have led to identification of several potent TxA₂ receptor antagonists *in vitro*.

Acknowledgements: We are grateful to Bristol Myers Squibb Analytical Department for providing IR, MS, and elemental analytical data. Thanks are due to Mr. Eddie Liu for radioligand binding technical assistance.

Notes and References

- 1. Hall, S. E.; Han, W-C; Harris, D. N.; Goldenberg, H.; Michel, I. M.; Monshizadegan; Webb, M. L. BioMed. Chem. Lett., preceding paper in this issue.
- 2. Das, J.; Reid, J. A.; Harris, D. N.; Goldenberg, H.; Michel, I. M.; Monshizadegan; Webb, M. L. BioMed. Chem. Lett., preceding paper in this issue.
- 3. Fouquet, G; Schlosser, M. Angew. Chem., Internat. Edit. 1974, 13, 82-83.
- Misra, R. N.; Brown, B. R.; Sher, P. M.; Patel, M. M.; Hall, S. E.; Han, W.-C.; Barrish, J. C.; Floyd, D. M.; Sprague, P. W.; Morrison, R. E.; Ridgewell, R. E.; White, R. E.; DiDonato, G. C.; Harris, D. N.; Hedberg, A.; Schumacher, W. A.; Webb, M. L.; Ogletree, M. L. BioMed. Chem. Lett. 1992, 2 (1), 73-76.
- 5. Bal, B. S.; Childers, W. E.; Pinnick, H. W. Tetrahedron 1981, 37, 2091-2096.
- 6. Serine amide 5 (white solid, mp. 193-7°C) was prepared as an hydrochloride salt in two steps from t-BOC-L-serine by coupling with p-chlorophenethyl amine [Ethyl-3-(3-dimethylamino)propyl carbodiimide (WSC), 1-hydroxybenzotriazole (HOBT), Et₃N or 4-Methylmorpholine (NMM), DMF, 0 to 25°C, 79%], followed by t-BOC-deprotection (CH₂Cl₂, TFA; Et₂O, HCl, 90%).
- Hemiacetal 7 was prepared in three steps from trans-1,2-cyclopentane dicarboxylic acid: (i) Δ, 81%, (ii)
 NaBH₄, THF, 0°C, 62% and (iii) DIBALH, Toluene, -78°C, 69%.
- 8. Misra, R.N.; Brown, B. R.; Sher. P. M.; Patel, M. M.; Goldenberg, H. J.; Michel, I. M.; Harris, D. N. BioMed. Chem. Lett. 1991, 1 (9), 461-464.
- 9. (a) Assay as described by Harris, D. N.; Phillips, M. B.; Michel, I. M.; Goldenberg, H. J.; Heikes, J. E.; Sprague, P. W.; Antonaccio, M. J. *Prostaglandins* 1981, 22 (2), 295-307; the I50 for BM13.505 and GR 32,191 were 730 nM and 33 nM, respectively, under identical assay conditions.
 - (b) Ogletree, M. L.; Harris, D. N.; Schumacher, W. A.; Hall. S. E.; Brown, B. R.; Misra, R. N. Circulation, 1991, 84, II-79.
- 10. Lefer, A. M. Drugs Future 1988, 13, 999-1005.
- 11. Assay as described by Hedberg, A.; Hall, S. E.; Ogletree, M. L.; Harris, D. N.; Liu, E. C.-K. *J. Pharmacol. Exp. Ther.* 1988, 245 (3), 786-792.
- 12. Saussy, D. L. Jr.; Mais, D. E.; Baron, D. A.; Pepkowitz, S. H.; Halushka, P. V. Biochem. Pharmacol. 1988, 37 (4), 647-654.